1 Introduction

Metrowerks CodesWarrior

User's Guide
DR1 Sample Documentatiion
January, 1994

Metrowerks Inc.

1500 du Callege, suite 300

St Laurent, Gic

H4L Sa 6, Carada

woice: [514] T47-59949

face [519) TaT-2522

appldivk: saleswerks

interret: sal es@m growetks .ca

2

Introduction

Metrowerks CodeWarrior © Copyright 1993 by Metrowerks Inc. and its Licensors

All rights reserved.

Metrowerks, the Metrowerks logo and Software at Work are registered trademarks of Metrowerks Inc.
CodeWarrior and PowerPlant are trademarks of Metrowerks Inc.

All other trademarks or registered trademarks are the property of their respective owners.

3 Introduction

Introduction

About DR1 Sample Documentation

This sample document contains two chapters taken from the Metrowerks CodeWarrior User’s Guide
included on-line with the Metrowerks CodeWarrior DR1 Bronze and Gold releases. The two chapters,
from in order of appearance, are:

« Chapter 3 Tutorial One: The Basics (S1)
» Chapter 14 The Debugger (S2)

About Metrowerks CodeWarrior User’s Guide

The Metrowerks CodeWarrior User’s Guide is a language-independent User’s Guide which details the
Metrowerks CodeWarrior Development Environment, demonstrates how to use Metrowerks
CodeWarrior through five tutorial chapters, describes how to use Metrowerks CodeWarrior
Debuggers, and gives system notes on a variety of issues from calling MPW C functions to porting C
code to the PowerPC based Macintosh.

This sample document includes the first tutorial and the chapter which describes how to use
Metrowerks CodeWarrior Debuggers.

For More Information

If you have any questions, comments, or would like more information on Metrowerks CodeWarrior
DR1 Bronze or Gold, we may be reached at the following location:

Metrowerks Inc.

Attention: Matt Vacaro
Suite 300, 1500 du College
St. Laurent, QC

H4L 5G6 Canada

Voice: (617) 246-4525
(514) 747-599, ext 301
Fax: (514) 747-2822

applelink: saleswerks
internet: sales@metrowerks.ca

Introduction

Chapter 3 Tutorial One: The Basics

This tutorial shows you essential aspects of the Metrowerks environment. In it you will build a simple
application. Later tutorials show more advanced features such as Metrowerks CodeWarrior
Debugger and complex text searching techniques. Read through this tutorial before moving on to the
other tutorials.

This tutorial assumes that you are familiar with Apple Macintosh programming and the C language.

Tip: C is a case-sensitive programming language. Enter filenames and source code
exactly as shown; keep uppercase and lowercase letters consistent with this
tutorial’s text.

Things you will know

By the end of this tutorial, you will know how to:
* use keyboard shortcuts to Metrowerks commands
* use the Toolbar
» create a new project
* open a source code file
» use the editor window features
» use the Preferences dialog box
+ use the Message Window
» compile, make, and run a project into an application

Chapter Outline

Building a small application: Silly Balls............ccccccccevniiiiennnnn. 3
About Silly BallS.......cccooiiiiiiii e 3
Things you Will dO........coooiiiiiiiiii 3

Launching Metrowerks.............eeiiiiiiiiieieiiiiiieee e 3
The AboUt BOX......ooiii e 3

KeYDOArd TIPS, ... uueeeeiieiiiieiee et 4

The TOOIDAr........coo e 4

ADBOUL Projects.....ccoceeeeeeee e 5
Creating the Silly Balls Project............ccccccooveiicciivinnnennn. 5

Changing Silly Balls...........cccociiiiiiiiiieceeeeeeeee e, 6
Navigating the Editor Window.............cccuviiiei. 7
The MyPaint() Function...........ccccoviiiii 8
Customizing the Environment: Preferences...................... 11
Find and Replace. ... 12

Saving YOUr WOrK.......cooouiiiiiiiiieee e 14

5

Introduction

Creating Your Application..........c..coveiiiiiiiiinie e 15
Adding MacOS.lib to the Project............ccoceviiiiiiiiiiiiins 15
The Resource File.......cooviiiiii 16
Compiling Silly BallS.C.......coviiiiiiiiiiiiiieee e 16
Egad! Compiler Error!...........coooiiiiiiiiie i 17

Make: Building Better Silly Balls..........ccccooiiiieiiiiiis 18
Egad! Ettu, LINKer?.......oooeeeeee e 19

Run: (Finally) Seeing the Results of Your Work...................... 20

Congratulations!...........occuiiii i 20

6

Introduction

Building a small application: Silly Balls

About Silly Balls

MPW (Macintosh Programmer’s Workshop) is Apple Computer’s development environment for the Macintosh computer.

Silly Balls is a small program written in MPW C by Apple Macintosh Developer Technical Support.
Silly Balls opens a window and draws randomly placed, multi-colored circles.

The source code you will use in this tutorial has already been modified to work with the Metrowerks C
compiler.

Things you will do

In this tutorial you will go through all the steps necessary to build a stand-alone, double-clickable
application named Silly Balls. The source code is provided but you will modify, compile, and link it.

Launching Metrowerks

This tutorial requires that you work with the Metrowerks C integrated development environment to
build the Silly Balls application.

To launch the Metrowerks C environment:

1. Find the SillyBalls project folder and drag it from your CodeWarrior CD (compact
disc) to your hard disk.

2. Find the Metrowerks application on your hard disk or CD-ROM.
To start the Metrowerks C application:

3. Double-click its icon.
The application is loaded and launched (Figure 3.1).

Figure 3.1 Launching Metrowerks

b CAEAE 1 0415

The About Box

Before working on Silly Balls, take a look at the About Metrowerks... box:
1. Choose About Metrowerks... in the Apple (&) menu.

Watch as the incredible graphics, animation, and sound dazzle you with the names of the intelligent,
creative people who work at Metrowerks.

7 Introduction

2. Press the mouse button to close the About Metrowerks... box.

Keyboard Tips

The Toolbar

To use some Metrowerks commands and features you need to use the keyboard with the mouse.
Holding a specified key down as you click an object on the screen will give a different result than
simply clicking the object. Using the keyboard with the mouse gives you access to useful shortcuts
and alternate commands.

For example (Figure 3.2):

1. Click the Search menu and look for the Find Next Command.
2. Release the mouse button without selecting anything in the Search menu.
3. Hold down the Shift key and click the Search menu again.

Shift-clicking the Search menu replaces the Find Next command with the Find Previous command
(Figure 3.2).

4. Release the mouse button and the Shift key without selecting anything in the Search
menu.

Figure 3.2 Example of Shift-clicking

THIS menu AppeEs WhEn To get hese commands,

you dick the Search Menu. Shift olick the Search Menu.
Find... %F Find... ®F
Find Next 30) o Find Previous #b
Enter Selection 3E snen Jf-dicking Enter Selection ®E

. . the Search Menu, . . .

Find In Next File T SoMme Commads ae Find In Previous File ®T
Replace *= different. Replace =
Replace & Find Next 3L Replace & Find Previous #¥L
Find Selection 3EH Find Prewious Selection 3H
Find Reference 3 Go Back £
Go To Line... 3, Go To Line... 3,

The Toolbar (Figure 3.3) contains a palette of command icons and a message area. You can remove
commands from and add commands to the palette. The message area shows status information
during compile, link, and search operations.

In these tutorials you can choose commands from the menu bar or from the Toolbar. Whenever you
must use a command, its Toolbar icon appears in the margin.

To display the Toolbar:

8 Introduction

1. If the Toolbar is not on the screen, choose Show Toolbar from the Tools menu.

To anchor the Toolbar:
2. If the Toolbar is not anchored, choose Anchor Toolbar from the Tools menu.

Figure 3.3 The Toolbar

Show Toolbar

To move the unanchored
Toolba, drag it from here.

SN B R =[]] e] e Pl e [= P =)

—To hide the Toolbar, click this
Cloae bow,

Hide Toolbar
Anchor Toolbar |
Reset Toolbar

menu bar. It has no drag ba.

’7The anchored Toolba stays under the

Cunperl MPU Librdru
FENE Y] S [e P [e) sy s ™ el | R = N =2t

Faste i
I
—The miessoge ared shows e nane The nessoge ared dso shows
of the: command ionn the Arow infarrnation diring compile, link,
pointer is on. An itdicized name ad other operaions.

e s e comm &l i oot auailalile

Tip: Just like menu commands, the keyboard is also used with the mouse to select
different commands from the Toolbar. For example, Shift-clicking the Find Next
command icon in the Toolbar shows Find Previous in the Toolbar message area.

About Projects
A project holds information about the files you need to create your program. Among other things, it

holds all of the source code and library file names used in your program as well as the object code
compiled from those files.

Creating the Silly Balls Project

To create the Silly Balls application, you will first create a project.

9 Introduction

Fi

ure 3.4

Creating the Silly Balls Project

New

New Froject... .

Open... 0
npen Selertinn 3
Clos
= SillyBalls + = Rinky Dinky ...
Sawm -
Soum B ;':ﬁ;g;g::}sa::ls.ﬂ.rsrc 7|
Sawm R)
pew | |5 Stamets
.
aqg —
i i
Prin
Name of new PMroject:
QUi [iysilyBalls.n] | (TR
S0=—— MiySillyBalls.m
File Code Data 3 3
Thiz caolumn lists e files L This colurmm lets wou open
inte project. 1t dso lists header files and mark files
lile-leyel segrierlaion . In e Projecl Tl
_ compl aion.
Thiz column sho we the
object code size for This column lets you set
each file. debugaing informaton.
This column shows the This column shows the
data size for each file. = seanentation type used in
o nE project (Tor
n filals) nK K i Metrovwerk SB8000 only).
1. Choose New Project from the File menu.
A dialog box appears prompting you to enter a project name and location on your hard drive (Figure
3.4).
2. Use the dialog box controls to open the Silly Balls project folder.
3. Enter the name MysSillyBalls.m in the entry field and click Save.

A project window appears (Figure 3.4) with the title MySillyBalls.n. Although they won't be used
in this tutorial, there are controls in the project window to generate debugging information , to
segment the program, and open header files.

Later, you will put the files in the project window for creating the Silly Balls application.

Changing Silly Balls

You are going to change Silly Balls to make it draw a more interesting pattern.

(0]

1. Choose Open from the File menu.

1 O Introduction

2. Select Si11yBalls.c and click Open (Figure 3.5).

A window appears showing the Si11yBalls.c source code.

1 1 Introduction

Figure 3.5 Opening SillyBalls.c

New
New Froject...

St =] SillyDalls +

4l [singBalls.c
Bell 1o singeaiis.n

|| | O sinyinit.c
h

®

=— Rinky Din...

i Cancel

o

FEFFr

(Y
FEFFE

—To display the project filesin this
foldcr,poligk hcrE:r. I

= To display the text filesin this
folder, click here.

Navigating the Editor Window

The editor window lets you edit and view a source code file quickly and easily (Figure 3.6).

Figure 3.6 The SillyBalls.c editor window

SillyBalis.c

rewTop = (ChewTopt32V67 2 * windRect bottoml/G65536;
riewle ML = {drmwle M LH3ET07 > 0 windRec L righ Ly /005530,
SetRecti&bal IRect, newLeft, newTop, rewLefi+Bal lWidth, newTop+Bal IHeight

o
/¢ HMowe pen to the new location, and paint the colored ball.
i

MoveTolnewleft, newTop?;

MaimtOval {Ebal INactx; AW Tutorial: Change thi= to Myfaintd{ibal IT|
£

£ Mowe the pen to the middle of the new ball position, for the text
I

MowveToftbal [Rect. left + Bal lWidth/2 - BobSize,
bal lRect. top + Bal [Height/2 + BobSize/2 -1);

A7 lawart the color and draw the text there. Thi=z won®t lock quite mig

£ mode, since the foreground and background colors will be the some. E
f¢ Color OulckDraw speclal cases thls to not Invert the color, to avolciSy
£ invisible drawing. E

ME)| |Line: 1 | < i

To quickly look at all of S111yBalls.c:

12

Introduction

1. Slowly drag the vertical scroll box down to the bottom of the vertical scroll bar (Figure
3.6).

Notice how the text scrolls with the scroll bar as it is moved down. This is the dynamic scrolling
feature in effect. Notice also that parts of the source code have different colors. This is the Color
Syntax feature which will be explained later in this tutorial.

To read a description of Si11yBalls.c (Figure 3.7):
2. Click the Line box at the bottom-left part of the window.
3. Enter 35 and click OK.

The window places the insertion point at line 35, showing comments describing what Silly Balls does.

Figure 3.7 GoinJgto line 35

[fvisisls draving. Yol can dso choose Go o line.
InwertColorcgbal IColory; in e Search menu to]Ump oa

HUBForelolortsbal [Lolar3; spedficline,

DrawStrings” ypBob™ 1 ;
YA Tuterial: HewBallil's

Go To Line Numher:
o)

M| iire: 1 o <]
™

To look at the function you will be changing:

4. Choose NewBall from the Function pop-up menu (the {} icon in the lower left corner
of the window).

The window shows the definition (Figure 3.8) of the function NewBall ().

Figure 3.8 Choosing NewBall() from the Function menu

o = gelecting afuncton defirition fom the
it The i TUNCION O RUR MenU only dsplays the
i kept zelected funclion —it does not move the

inserticn peint,

t =mome other- proc

The MyPaint() Function

The NewBall () function picks a random point in the window and draws a circle using the QuickDraw
PaintOval () routine in a random color with the name “Bob” in it. You will make NewBall () more
interesting by having it call a new function, MyPaint (), which you will enter.

1. Move the insertion point to the end of the last line in the source code file, at the end
of the definition for NewBall ().

2. Press Return twice, then type this in exactly without pressing the Return key:
void MyPaint (Rect *myRect

13

Introduction

Do you see how the word void is a different color (or shade of gray)? This is the Color Syntax
feature in effect. The Color Syntax feature colors keywords differently from the rest of the source
code.

Watch the left parenthesis in MyPaint (Rect to see the Balance While Typing feature in effect:
3. Type the right parenthesis,) .

Notice how the left parenthesis is momentarily highlighted as you entered its matching right
parenthesis. Balance While Typing momentarily highlights a left brace, ({), bracket([), or parenthesis
(() when you enter its matching right partner.
Enter the beginning of the function block:
4. Press Return, type an opening brace, {, and press Return again.
5. Press the Tab key, type the following variable declaration, then press Return:
RGBColor myColor;

When you press Return, notice how the insertion point is on the next line, aligned with the indented
text above it. This is the Auto-indent feature in action. Auto-indent automatically indents source code
text at the indentation level of the last line entered. You can back up the insertion point by pressing
the Delete key.

Now you can enter the rest of the function body:

6. Press Return and enter the rest of the source code for the function exactly as it
appears here, terminating each line with a press of the Return key:

// Get the foreground color
GetForeColor (&myColor) ;

// Invert the color
InvertColor (&myColor) ;
RGBForeColor (&myColor) ;

// Paint the square
PaintRect (myRect) ;

// Restore the original color
InvertColor (&myColor) ;
RGBForeColor (&myColor) ;

// Paint the circle over the square
PaintOval (myRect) ;

Notice that comments (text preceded by //) are colored differently from the rest of the source code.
Again, this is the Color Syntax feature in action.

Your new function should look like the source code entered in Figure 3.9.

14 Introduction

Figure 3.9 Fresh MyPaint()
Eie=——— SillyBalls.c ==

ff mode, since the foreground and ba
A4 Tulue QuickDeuw speciul cus=es Lhi
A inwisible drawing.

i

Irver-tCo | orcEba | [Color;
RGBForeColaorcg&bal [Colaor2;
OrowStringl " \pBob™ 3;

b /MW Tutorial: HewBallor's last line

void MyPaint(Rect *myRect’
i
RGEColor myColar;

Jf Get the foreground color
GetForeColor(&myColor);

#¢ Inwert the color
Iruar ol orfmyCalor b,

Thiz is the source code RGEForeColor(&myColory;
ol hawe added to
ilyBdls.c /¢ Paint the square

FalntRectimyRact;

/¢ Restore the original color
Irver-tCol orCEmuColar),
RGEForeColor(&myCalor 3 ;

£ Paint the circle over the square
PaintOwal imyFRectX;

E_|| [Lire: 167 | <alii

Now you must enter the function prototype at the beginning of the source code file so the compiler
recognizes the data types passed to and returned by MyPaint ().

7. Place the insertion point after the prototype for NewBall (), near the beginning of the
document.

8. Enter void MyPaint (Rect *); and press Return (Figure 3.10).

1 5 Introduction

Figure 3.10 Enterirllg the MyPaint() prototype

EO=——— SillyBalls.c =
AAHH M He lrowerke rale e
/¢ All changed code by Hetrowerks |
ff Ihere 1= one type ot moditicatio
£ ® Added argument type ond return
A In order to pass with extended
i

ff BA31793 JUR

AMHH Tutorial ## Metrowerks Tutorial
a0 AT chunged code Tors Lie He Leowers

AT Tutorgl
#include <MacHeaders:
#include "SillgBal 1=.0"

S Globals */
Ract windRact;

A Mrototypes ¥
extern wvoid Initializedwaid);]
wold HewBqlliwolds; £

Thisis the unction ————void HyPaintiRect *3;
prototype you entered. y

Jf Main body of program SillgBal 1=
A

AMMH specified argument and return ty
wvoid mainuwaid?

ME)| |Lire: 22 | <

Customizing the Environment: Preferences

Not only can you customize the Toolbar, you can also change parts of the editor to suit the way you
work. You can customize aspects of the editor and the document you are working on with the Font
Preferences and the Editor Preferences.

To examine the current Font Preferences:
1. Choose Preferences... from the Edit menu.
The Preferences dialog box appears.
2. Choose the Font icon in the scroll window of the dialog box (Figure 3.11).

The Font Preferences group appears.

1 6 Introduction

Figure 3.11 Font Preferences

Undo Typing ®Z
Cut w1l
rnpu EN
Paste AL
Clear
Select Al ¥R r—Lhanges made © s Font Hreterence
group apply o the active program file
Balance ®p or text file.
Shift Left #[
Shift Right o
luserl TR Templd le fipply to active document.
" " r Font & 5ize Info:
Preferences...
! Font: [Monaco |
_| size: | 9 v |
W
The Calor S'FI,I'I"ITB.)(Eﬂd | program therefore | am.
Bdance While Typing Editor

eferences ae inthe
ditor Preferences
Qroup.

Languag‘e

B Aulu Indenl Tab Sicu:

n
Processor

[Factory Setlings]| [Revert Panel] [Cancel | I 0K I

= To furn Aatdomatic indenting of,
click here.

= To reset the preferences to the default
seftings, click here,

This tutton is dimmed_ becalse no changes
have been made to this preference group.

To leave the Preferences dialog box without saving changes made to the preferences:
3. Click Cancel.
Other groups of preferences are examined in later tutorials.

Find and Replace

To use your new function, the PainOval () call in the NewBall () function must be changed. In
NewBall (), replace the call to PaintOval () with MyPaint ().

1. Choose Find... from the Search menu.

A dialog box appears prompting you to enter a search string and a replace string (Figure 3.12).

1 7 Introduction

2. Enter PaintOval (

This is the string to search for.

3. Press Tab to move to the insertion point to the replacement entry field and enter
MyPaint (
4, Click Find (Figure 3.12).

Figure 3.12 Finding and replacing

Find Next

Enter Selection ®E

Find |n Next File #T

HEPldEUE Find

FH;T_:::E Find:| paintoval((=] Ignore Case
[Entire Word

Find | Replace: MgPaintﬂ O wrap Around
[JRegexp

Go To

Fulti File Search Replace All
[ston 2 fas Projent tournas p
: - } Baplace ¥ Find
— Gere
SillyBalls.c

Rysidte B
/¢ Moke a Random new location -+ Haphay

Ff This makes the Integer ol
ff and 0. windRect right. The
Jf time drawing in places out

rewTop = Rondom(); newleft = R
rewTop = ({newTop+32767) % wind
nemleft = (Chewleft+32767 0 * wi
SetRecti&bal IRect, newleft, new

£
ff Mowve pen to the new locatio
i

MHoveToinewlatft, newTopl;
PaintOval (8bal IRect »; ———=#— The find siring is displayed
Iy and selected In the active

A Mowe the pen to the middle editor windo.
i

HoweTocbal IFect. left + Bal IHidt

bal IRect. top + Eal IHeight /2

A Ihvert the color and deaw t
A4 mode, since the foreground
¢ Color OuickDrow special cas
A iruisible drawing.

Invertbolorcgbal IColor);
FGEForeColor(&bal ICo lor);

The search begins at the insertion point. Then, the first occurrence of Paintoval (is displayed and
selected (Figure 3.12). You may have to drag the Find window to see the text the editor found.

5. Click Replace (Figure 3.13).
PaintOval (is replaced with MyPaint (, shown in Figure 3.13.

1 8 Introduction

Figure 3.13 Repla<’:i_ng the call to PaintOval()
=——— SillyBalls.c

i

FOBFureCulur C&bul [Culur s,

/¢ HMake a Random new location fo
A This mokes the Integer from R
ff and 0 windRect right. They

A time drawing in places outsid

newTop = Random?}; mewleft = FRan
newTup = CewTopt3ZT0T: T windfie
rewleft = {Cnewleft+327672 * wind
sSetHectikbal IHect, newLett, mewlo)

i
/4 Howve pen to the mew |location,
i

. MowaTolnawlaft, nawTopl;

The replaced tert IS—————— HuPaintigbal IRect); AU Tutor
sefented, i
AF 0 Move the pen to the middle of

i
MoveTodlbal IRect. left + Bal INidth/
balIRect. top + BalIHeight/2 +

¢ Invert the color and draw the
A4 mode, since the foreground am
Jd Color QuickDraw speci

ME)| |Lire: 129 | <l

To close the Find dialog box:

6. Click the close box of the Find window.

Saving Your Work

To save the changes you made to the source code:

k=

1. Choose Save from the File menu (Figure 3.14).
Fiﬁure 3.14 Saving SillyBalls.c
New #EN
New Prujecl...
Open... #0
Open Selection 30
Close #W

Save HAs...
Save A Copy As...
Revert

Page setup...
Print Selection...

Ouit #0

1 9 Introduction

Creating Your Application

Before it can be compiled and made into an application, Si11yBalls.c must be added to the
project.

1. Make sure SillyBalls.c is the active window.

Because the Si11yBalls.c source code window is over the project window, you can’t see that it
has been added to the project.

2. Choose Add Window in the Project menu.

To see the project window:
3. Choose sillyBalls.n from the Window menu (Figure 3.15).
Figure 3.15 Adding a source code window to the project

Project
Add Window

Add Flle...

Rcmove

Reset File Paths

Check 51

Frecom ;i::r'k

Compile) _

Disasser Tile Dertical

Remoue Project Su.li.tch List »

Bring up Message Window

Make ToolServer Worksheet

Ruild 1ih - . . .

MuysSillyBalls.w . 38 To make the project window

Run aotive, zclect thiz item.

~ SillyBalls.c #1

Adding MacOS.lib to the Project

You may have noticed that some function calls in Si11yBalls.c are notdefinedin SillyBalls.c.
These functions, like PaintOval (), and GetForeColor () for example, are Macintosh Toolbox
routines. The linker needs to know how to get to these Toolbox routines. Mac0S.1ib is a library that
does this: it contains object code that allows access to the Macintosh Toolbox.

To add Mac0S.1ib to the project:

IJ.:;

1. Choose Add File... from the Project menu.
A dialog box appears prompting you to choose files to add to the project (Figure 3.16).
2. Find and open the Libraries f folderinthe Metrowerks C/C++ 68K folder.

20 Introduction

3. Next, open the MacOsS-Libs folder.
4. Select MacOs.1ib and click Add (Figure 3.16),
5. Click Done.

2 1 Introduction

Figure 3.16 Adding MacOS.lib to the project

Project

Add Wndow

Al File ..

Remaouve
Reset File Paths
Lhec £9 Macl5 libs =
Prec X i
Com| [NC0bjectSupport Libs || = Rinky Dinky Disk
Disas L3 MacUy I_lles _
0O MacD$.lib ¥iwet
LJ MFLW specials
Renn Deskt
Bring|| |2 SANE Files esxiop
Mak: [1 SANE.lib
= Add all
Run _ k]
- Seleci files 1o add...
[
Husgirsiss o
I Lancel

The Resource File

If a resource file has the same name as the project with “. rsrc” added to it, it is automatically added
to the project (My SillyBalls.m.rsrc, for example). Such a resource file must be located in the
project’s folder.

The project window shows two files: SillyBalls.c, Mac0S.1ib (Figure 3.17).

Figure 3.17 The project window

MySillyBalls.n
File Code Data E ¥
1 SillyDalls.c H [=H ® [
Mac0S Tib | 0 o Bl
2 filels) 0K 0K 5l

Compiling Silly Balls.c

To compile sillyBalls.c:

1. Make sure the sillyBalls.c window is active or SillyBalls.c is selected in the
project window.

22 Introduction

2. Choose Compile from the Project menu.

The message area in the Toolbar shows the compiler’s progress (Figure 3.18).

Fii ure 3.18 Compiling a source code file
Project

Add Window
Add Flle...
Rcmove

Respt Filr Paths

Check Syntax ¥
Frecomplile...
Compile
Disassemble

Remove Binaries -
Bring Up lo Date U

Make M

Ruild lihrary

= ES = R) s EE) = = Y B A =
T |Compiling: <SillyBalls.c” Line: 63
And then. ..

Egad! Compiler Error!

A window appears indicating that there has been a compiler error (Figure 3.19). This window is called
the Message Window. In this case, the Message Window gives you access to the compiler errors that
have occurred.

Figure 3.19 The Message Window

MESSﬂgE Window SS————1=
o8 Errors @ 2 “¢ Harnings ;0
*% Error I expression syntas= error ey

SilluBalls.c line 168 & |

++ Link : Compilation aborted at end of file 11!

Toopen the source aode file and select
the source code that caused this error,
doutde click or Option click this
message.

Inthiz case, the source code that caused
the error is dready selected because itis
the only compllar erraor.

The Message Window is especially useful when many compiler errors occur in a project with many
files. With the Message Window you can quickly jump to the source code statements that caused the
errors.

In this case, though, only one error occurred. To fix the error:

23 Introduction

1. Click the si11yBalls.c window to make it active.

24 Introduction

If you entered it exactly as shown earlier in Figure 3,9, the function MyPaint () has an intentionally
missing closing brace that caused the compiler error.

2. Add the missing brace, }, as shown in Figure 3.20.

Figure 3.20 Touching up MyPaint()
E0=—— SillyBalls.c
A omode, since the foreground and b

f7 Culor OuickDruw =peciul cuse= L

ff imvisible drawing.
i

InuertColort&bal IColors;
RGEForeColor{&bal |Colar 3;
NSt ing " ypRnk™ 1

YA Tutorial: MewBalldx's last line

void MyPaint{Rect *myRect’
i
RGEColor myColor;

/4 Get the foreground color
GetForeColar (&myCo | or3;

¢ Ilnwert the calor
IrwertColardEmyCalory;

RGBForeColar (EmyCa | or-3;

f¢ Paint the square
FaintHectimyHect »;

/¢ Restore the original color
IrvertColorC&muColord;
FGBForeColar (EmyCo | or 3 ;

£ Paint the circle owver the square
PaintOval imyRect;

Thizis the right brace you——
entered after the 15651 Line: 168
statement in MyPaintf). H@ i el

To save the correction:
3. Choose Save from the File menu.

Make: Building Better Silly Balls

Now you are ready for the second attempt to create the Silly Balls application. Instead of using the
Compile command, you will use the Make command. The Make command builds a project into an
application, code resource, or shared library. It compiles any source code files that have changed or
marked for compilation, and links all the libraries, resource files, and compiled object code together to
make a program.

To attempt to build the project:

1. Choose Make from the Project menu.

The file begins compiling and the message area in the Toolbar shows the compiler’s progress. Then
the linker begins linking the functions in SillyBalls (Figure 3.21).

25 Introduction

Note: If compiler errors occur, carefully check the MyPaint () function definition at the
end of SillyBalls.c (Figure 3.9), check the MyPaint () prototype (Figure 3.10),
and check the call to MyPaint () in NewBall () (Figure 3.13).

Figure 3.21 Making the project

Project

Add Window
Add Flle...
Remove

Reset File Paths

Check Syntax ¥
Frecomplle...
Compile K
Disassemble

Remove Binaries -
Bring Up To Date U

Buijld lihrarn

RIS R EEE R e EE = = Y EE D B A

Linkiny. “Hy3illyBalls .

Rur

And then. . .

Egad! Et tu, Linker?

The Message Window appears again, this time indicating a linker error. There is one function call,
Initialize (), thatis not defined in MySillyBalls.c. The linker could not find the definition for
Initialize (), so it signaled an error (Figure 3.22).

’Ijgure 3.22 The return of the Message Window
=—————— =

Message Window
o8 Errors 1 <% Harnings : 0O

=l
i

++ Link. . LirkErruor SillgBulls.c. 'Inilivlice’ relferenced feon fmoudin®

E

=&l

‘<::| il

Fortunately, this error is easily fixed:
IJ.:;

1. Use the Add File... command to include the si1lyInit.c file in the project (Figure
3.23).

SillyInit.c,inthe SillyBalls folder, defines the Initialize () function.

26 Introduction

’Iigure 3.23 The project window with Sillylnit.c
=]

=—— MysillyBalls.n
File Code Data H ¥

1 SillyDall=e 2006 12 M| |
Siylnite ! (i} o i
Mac0S lib | 20362 o]
3 file(s) 30K 0K]

Run: (Finally) Seeing the Results of Your Work

Your project is now ready to be compiled and linked for the final time. If everything was entered
correctly, the project will be built into an application.

=]

The Run command performs a Make command, then runs the application as if it were double clicked
from the Finder desktop.

1. Choose Run from the Project menu.

SillyBalls executes until you press the mouse button:
2. Press the mouse button.

Control returns to the Metrowerks environment.

Congratulations!

You have successfully created a project, modified a source code file, and built an application with the
Metrowerks C environment.

What Is Next

The tutorials that follow Tutorial One will show you more advanced aspects of the Metrowerks
environment. While this tutorial covered many aspects of the Metrowerks environment, the later
tutorials focus on specific commands and features you can use to accomplish certain tasks.

Figure 3.24 lists more information on the commands and features covered in this tutorial.

Figure 3.24 For more information...
For more information Consult this part of the User’s Guide
on...

Keyboard shortcuts “Things You Should Know” in Chapter 1
The Toolbar “The Toolbar” in Chapter 12

27

Introduction

Searching
Preferences
Building a project
Editor commands
Message Window

The editor window

“Replacing Text” and “Find” in Chapter 10
“Preferences” in Chapter 9

“Add File” and “Add Window” in Chapter 11
“More Text Editor Notes” in Chapter 9
“Message Window” in Chapter 13

“Opening a Program File” in Chapter 8

28 Introduction

Chapter 14 The Debugger

The Metrowerks CodeWarrior Debugger monitors the execution of your program. With it you can
execute your program one statement at a time or you can execute it normally and stop at points you
specify. When the debugger stops a program, you can examine variable values, the chain of function
calls, and the source code files in your project.

Chapter Outline
Installing the Debugger NUDS.............ooiiiiiiii e 24
Preparing a Project for the Debugger............cccoooviviciiiiinnnnns 25
Metrowerks Environment Preferences..........cccccccvvevenenen. 25
The SYM File ...t 25
Generating SYM information...........ccccooeii 25
Starting the Debugger ..o 26
Launching the Debugger............oooiiiiiiiiiiieee e 26
Debugger WIiNAOWS........coooiiiiiiiiiieiieeee et 26
The Program Browser Window..............ocoiiiiiiiiieiinnnnnn. 26
The File Browser Window............ccooiiiiiiiiiiiiieeccceeiienn 28
The Function 1CON..........oooiiiiiii e, 28
Breakpoints........ueeeeiiiei e 29
What a Breakpoint DOES..........cceeviiiiiiiiiiiiiiiiiie 29
Setting and Clearing Breakpoints..........cccccccoeeviiiiiin. 29
The File MENU.......cooeeieeeeee e 30
OPBN. e 30
{7 o 30
L TH) S 30
The Edit MeNU.......oooiii e 30
L o o o TR 30
L | S 31
(7] o) V2RO UTPPRSTPPR P 31
PaSste. ... 31
L3 | R 31
SEIECEAIL ... 31
The Control MENU........ccoeiiiiiiceeeeee e 31
RUNL et 31
(o] o TR 32
| SRR 32
SEEP OVEN ... 33
StEP INL0. e 33
SEP QUL 33
Set Breakpoint...........uvveeeiiiiiieiiiiiiieecceeee e 34
Clear All Breakpoints...........ceeeiiiiiiiiiiiiiiiiiiceeeeeceeeeeeee, 34
Switch 0 MONItOr.......coviiii e, 34
The Data MenU..........cooiviiiiiiiiiieeeeeee e 34
SNOW TYPES...ciiiiiiiiiiie et 34
EXPANd...ooiiiiiii 34

29

Introduction

Copy t0 COollECHON.....ccciiiiiiiee e 34
OPEN WINAOW.....coiiiiiiiie et 35
POINEN ... 35
AITAY e 35
VIBW @St 35
Signed Decimal...........coooiiiiiiii 36
Unsigned Decimal.........ccccueiiiiiiiiiiiiieeeeeeeee 36
Hexadecimal..........coooiiiii e 36
Character......cooi i 36
C SHNG i 37
Pascal String.........ooooi i 37

Floating Point...........ouveeiiiiiii e, 37

30

Introduction

Installing the Debugger Nubs

The debugger for 68000-based Macintosh computers requires DebuggerINIT in the System
Extensions Folder. The debugger for PowerPC-based Macintosh computers requires the BranNub
application to be launched before launching the debugger.

These two files, DebuggerINIT and BranNub, are debugger nubs included with the CodeWarrior CD
(Figure 14.1). A debugger nub that provides low-level services for the debugger.

Tip: To make sure the BranNub is always launched before the debugger, place BranNub
in your Startup Folder. Restart your computer so BranNub is automatically
launched at start-up time.

Figure 14.1 Installing debugger nubs
’gjgé Debugger Nubs SEIS

Zitemns 133 MBindisk 469
i

a}fﬁ For Power PC-bioted Wacinlosh
- comE_lters,Jj ace this file in your
Brantb Stariup Folder and restart your
COIM pter.

For 63000- besed Madntosh
; cornputers, place this file in your
Debugger INIT o] S]gtegn Erﬂensmnst Folder and
restart WoLr COorm puter.
] BE Y M

Developers Notes:

DebuggerINIT intercepts the SysBreak () and SysBreakStr () functions only. It
does not currently intercept the Debugger () or DebugStr () functions.

The BranNub debugger nub intercepts the Debugger () and DebugStr ()
functions. It does not intercept the SysBreak () or SysBreakStr ().

Currently, the debugger only debugs applications (68000 and PowerPC) and
shared libraries (PowrePC). Code resources (68000) are not supported yet.

This release of the debugger supports C, C++, and in-line assembly for the 68000
in C/C++. It does not yet support Pascal.

31

Introduction

Preparing a Project for the Debugger

The debugger requires certain information about your program. Before using the debugger to monitor
your program, you must prepare it from the C, C++, or Pascal environment. Follow the instructions in
this section to generate the information the debugger needs.

Metrowerks Environment Preferences
In Linker Preferences for the 68000 environment, select the Generate A6 Stack Frames.

Consult Preferences... in Chapter 9 for more information on Linker and Project Preferences dialog box.

In the 68000 and PowerPC environment Linker Preferences, select Generate SYM File checkbox.
Selecting the Full Path in SYM Files checkbox is recommended so the debugger can locate project
files that are not in the project’s folder. If you do not select Full Path in SYM Files, the debugger may
prompt you to locate these files.

In Project Preferences for the 68000 and PowerPC environments, choose the Can background item in
the Size Flags pop-up menu.

The SYM File

A SYM file contains symbolic information about the files in your project. As well as other pieces of
information, the SYM file contains the names of functions and variables, their locations within the
source code, and their locations within the application object code.

The debugger uses this symbolic information to present your program as C, C++, or Pascal
statements and variables instead of assembly-language instructions and memory addresses.

The debugger expects the SYM file to have the same name as your source code file with “.SYM”
appended to it. For example, if you want to debug the Abstract Painter application, the
debugger requires a SYM file with the name Abstract Painter.SYM.

Generating SYM information

Consult Generating SYM Info in Chapter 11 for more information.

The linker optionally creates the SYM file the debugger requires. From the Metrowerks environment,
select the Generate SYM info marker in the project window of each source file you want to use with
the debugger and set the preferences discussed earlier.

Note: If a source code file is not marked to generate SYM information from the project
window, the debugger cannot display any information about the file while it is
executing.

32 Introduction

Starting the Debugger

Launching the Debugger

There are three ways to launch the debugger:

Consult the debugger’s Open command for information on opening a SYM file to debug a program.

(@)
(b)

(c)

Double-click a SYM file.

Double-click the debugger icon to launch the debugger application. When you
launch the debugger this way, a dialog box appears, letting you open a SYM file.

Drop a SYM file onto the debugger icon. When launched this way, the debugger

opens the SYM file.

Debugger Windows

The debugger presents information about the target program (the program being debugged) using the

Program Browser Window and the File Browser Window.

The Program Browser Window

The Program Browser Window displays debugging information about the source code file in your
project containing the currently running function.(Figure 14.2).

Figure 14.2 Parts of the Program Browser Window
T resize the pEnes, drag
these bars.
To display A |
routing in the = i
Ll Cote sO0=——— Abstract Painter
Pane, click a _Startup— [4F| (||| = oPaintwindow (0x006CE300
ragtine name in | |main LI B aPrefet i0x00724ECD
the Cal Chan ImtBrushes = qlhekvent HlxlU f2aE e
Pane. Randorize [H what D

The Hilree Cocde

Randomizetmin, max?

Pane displays he i{”‘ min, mex;
UUH':‘:H!]}I’ reqister unsigned qdRan;
E-Ker_‘.thlng SOLIFCE lang ranga, rasult;
code fle.

gqdMan = Mandom< ¥;

range = max — min;
result = (qdRan + rangel S OO33T;
returniresul t+mind;

[
+

¥

Line: 244 [<]

=

The current statement arrow points to
the next statement to be exented

dlo bal
vaiakles, Use
the variable
Pane.

The Source Code Pane shows the currently executing source code file (Figure 14.2). The debugger
takes the source code directly from the project’s source code files, including any comments and white

space. The Pane shows C,

33

Introduction

C++, Pascal, and in-line assembly code exactly as it appears in your program’s source code.

If more than one function call is on a line, each function is executed separately as one step before the
current statement arrow moves to the next line. When this happens, the arrow is dimmed whenever
the program counter is within, but not at the beginning of, a source code line.

The Call Chain Pane in the Program Browser Window shows the current subroutine calling chain
(Figure 14.2). Afunction appears below the function that called it.

Figure 14.3 The anatomy of the Variable Pane

Toy resize the column
widths, or ag this

Separaior.

T hicde the infarm atian in tis [» aPrefiet - RrushPrefs My NNATCEFN
variable, dick his tiengle. aTheEvent : EventRecord :0x0037C5F3

what : shont i0

meszage : 1png 0
To showethis variable's when : lon 0
information, click tis triangle. B where : Pojnt {0x0037C602

modifiers |ahort i0

ad : void i

Click a variable to =slect it

Consult debugger’s Expand, Collapse, and Collapse all commands later in this chapter.

The Variable Pane shows a list of local and global variables and their values (Figure 14.3). The local
variables listed in the Variable Pane belong to the currently executing function.

The Variable Pane lists the variables in outline form, like a list view in the Finder. Click the triangle
next to an entry to show or hide the entries inside it. For example, in Figure 14.3, clicking the right-
pointing arrow next to gTheEvent (which is inside the Globals for Abstract Painter entry) displays its
members. Clicking on the arrow again hides the C struct members.

Note: There is no register or memory display in the Variable Pane when stepping through
in-line assembly code,

Developers Note:

Currently, the debugger only displays static local and external global variables in
the Variable Pane. The debugger does not display static global variables in this
release.

34

Introduction

The File Browser Window

Figure 14.4 The anatomy of the File Browser Window

_I=—— RAbstract Painter.5¥Y™M

Abstract Painter.c

MacO5 1ib Todisplay afilein the

__Runtimeodule— Shures Code Mang,
click itz filename in
the File Pane.

To resize the pones,
dr g this bar.

Hekbtk ManuBar | R b ke g

MenuBar [rnite)
i

To examine asouree
code file, use lhe
Solrce Code Pane.

Handle ABPtMenuBar

- AbPtHeruBar = GetHewMBar1283;
-i SetHenuBar {AbF tHenuBar »;

. gApp | eMenu = GetMenuw(APPLE_MEHU_1DD;

] | & |

The File Browser Window lets you to set breakpoints and displays your project’s source code files
(Figure 14.4). You can only view source code files in the File Browser Window; library files are not
displayed.

INote: Only source code files can be displayed in the Source Code Pane.

The Source Code Pane in the File Browser Window shows the source code file selected in the File
Pane.

The Function Icon

Figure 14.5 The Function Icon pop-up menu

Drialoglnit ¥ Main Progr

FlenuBar il

TaoalBasInit

“window Init

ImitPrefs

InitBrushes rables e

. i . Handel*lenuCholce

_Selec}nn%:)a routine displays IsCelor s,
itin the Source Code Pane — thethe

SetColar cad=Ch

Sethaggle theFar
The check means man() ColorLines whichl
IS currently executing main -

alorLines

Disloginit Main Froge
HandleMenuChoice
InitBrushes
InitPrefs
IsLalor

- rain

MenuBar Init

iobles

ghane,

i L SetColor theCha
Opfion-dicking presents Setwaggle codeth
an aphateticaly sorted ToolEoxInit thePar

menu of routines.

I indow Init

3 5 Introduction

Breakpoints

The Function pop-up menu, at the bottom-left corner of the Source Code Panes of the Program
Browser and File Browser Windows, contains a list of the functions in the source file in the Source
Code Pane (Figure 14.5). Selecting a function in the Function menu displays it in the Source Code
Pane. Option-clicking the Function menu presents an alphabetically sorted menu.

What a Breakpoint Does

A Breakpoint marks a statement to suspend the target program’s execution and return control to the
debugger. When the debugger reaches a statement with a breakpoint it stops the program before the
statement is about to execute.

Setting and Clearing Breakpoints
Consult the debugger’s Set Breakpoint and Clear All Breakpoints commands later in this chapter.

From the Source Code Panes of the Program Browser and File Browser Windows, you can set a
breakpoint for any statement in any source code file in the project (Figure 14.6).

Figure 14.6 Setting Breakpoints

s[I=———— Abstract Painter
—Startup— [||| Anesds
Yol can dso set breakpoints in main max : short 1456
any source codk file with the Fle InitBrushca min : short i
Brawveer Window, Randomize [| qdRan : unsigned short (10243
£k ranga : long 1458

FRrbbb bbbt FOndom|Ze Stbn bbbt o

To zet abrodipoint at Rardom i zetm i 3
this staterment, <lick tis nt min max
"fattened" circle, —— -1 ¢

regi=ter unsigred ArRnn;
lang range, result;

qdRan = Randomt ;
rurige = onus < omin,

result = (qdRan * range) / B5535;

[
»

A regpoint Is set at the —— Feturniresul thming;

return statement of this ¥ 5
function. IR

To cled L bredgoinl, e G I |

click thi= circle

Tip: Not only is your code easier to read if you put only one statement on a line of
source code, it is easier to debug because the debugger allows one breakpoint per
line of source code, no matter how many statements a line may have.

3 6 Introduction

The File Menu

Open
Consult The SYM File earlier in this chapter for information on generating a SYM file for your project.

Opens an existing SYM file to debug a program. The dialog box in Figure 14.7 appears, prompting
you to select a SYM file. The SYM file must be in the same folder as its target program (the program
you want to debug).

Once you choose the SYM file, the debugger loads it into memory, loads the target program, places a
breakpoint at the main entry point of the program, then launches the program. The debugger then
pauses the program at the initial breakpoint, returning control to the debugger.

Figure 14.7 Opening a SYM file

Flease select a S¥M file:

[+= Hbstract Painter ¥ | — Hutty the ...
O Abstract Painter.S¥YM 7| finet

Desktop —— L= this didog box to
open a Sy fille.

Cdncel

4

Close

Stops the target program and closes the SYM file and the debugger windows.

Quit

Stops and closes the current target program and quits the debugger.

The Edit Menu

Undo

Reverses the effect of the last Cut, Copy, Paste, or Clear operation.

37

Introduction

Cut

Deletes the selected text and puts it in the Clipboard. You cannot cut selected source code from a
Source Code Pane.

Copy
Copies the selected text into the Clipboard.

Paste

Pastes text in the Clipboard into the active window. You cannot paste the Clipboard contents into a
Source Code Pane.

Clear

Deletes the selected text without placing it in the Clipboard. You cannot clear selected source code
from a Source Code Pane.

Select All

Selects all of the text in the active window.

The Control Menu

Run

Executes the target program starting at the current statement arrow until a breakpoint is reached or
you issue a Stop or Kill, or Close command. If the target program reaches a breakpoint or you issue
a Stop command, the debugger regains control and the Program Browser window appears showing
the current statement arrow and the current values of local and global variables.

Using the Run command after the Kill command executes the program from its beginning. The
debugger places a breakpoint at the program’s main entry point. It then starts running the program,
pausing at the initial breakpoint (Figure 14.8).

38

Introduction

Figure 14.8 Starting the execution of the target program
I

Abstract Painter.SY¥YM™M
=0 Abstract Painter
mai n | [T e
| y D e
awNEImplemented i1g
menuChoice i5552098
theChar iZe
— i thePart 11533
- i
When a target program is
I_IJLSEJJE_I.{I;?TW:QE”TFEO;\” FEE%t iS : AkdREkkEt etk Mg in Program
set af the main entry { maincs
point of the program. o |
: Skt g | gh |as sk)
Eoolean ghone, gHHE |mplemented;
char theChar;
— long int codeChar, meruChoice, windSize;
Line: 520 [<&] o

Stop

Suspends the execution of the target program and returns control to the debugger. The Program
Browse window appears showing the current values of the local and global variables and the current
statement arrow pointing to the next statement to execute. Stop is dimmed in the Control menu and a
message appears in the Program Browser Window’s Source Code Pane when a program is stopped.

To continue executing a stopped target program you can:

(a) continue the normal execution of the target program with the Run command.

Execution will continue beginning at the current statement arrow.

(b) step through the target program one statement at a time with the Step Over, Step

Into, and Step Out commands in the Control menu.

Note: If the target program is running in the foreground, Stop will not work. Stop works
only if the target program regularly calls the WaitNextEvent/GetNextEvent
Macintosh Toolbox routines.

Kill

39

Introduction

Stops the execution of the target program and returns control to the debugger. The target program’s
execution is killed, not suspended (Figure 14.9). While a breakpoint and the Stop commands allow
you to resume program execution from the point where it was stopped, Kill requires Run to restart a
program. Using Run after using Kill starts the program from its main entry point.

’Ijgure 14.9 AKilled target program
EN=———— Rhstract Painter =——oPI=

| | | farsds

] qDone

g HEImplcmented

menuChoice
theChar

6 Ll Par |

Praogram “Abstract Painter® is not running.
Choose Run from the Control menu
to start it

=]

0

=

Step Over

Executes a single statement, stepping over function calls. The statement pointed to by the current
statement arrow is executed and control returns to the debugger. When the debugger reaches a
function call, it executes the function without displaying it in the Program Browser Window. In other
words, the Step Over command does not go deeper into the call chain. However, Step Over does
follow execution to a function’s caller when a function terminates.

Step Into

Executes a single statement, stepping into function calls. The statement at the current statement
arrow is executed and control returns to the debugger. The debugger follows function calls, showing
the execution of the called function in the Program Browser Window. Unlike Step Over, the Step Into
follows the program flow deeper into the call chain when it executes a function call.

Step Out

Executes the rest of the current function until it exits to its caller. Unlike the Step Over and Step Into
commands, Step Out executes the program normally from the statement at the current statement
arrow and returns control to the debugger when the function returns to its caller.

Tip: Functions with no debugging information, such as library functions, are not
displayed in the Source Code Pane. Use Step Out to execute and exit functions
that have no debugging information.

40

Introduction

Set Breakpoint

Set a breakpoint at the selected source code statement. Set Breakpoint sets a breakpoint only if the
selection begins and ends on the same statement.

Clear All Breakpoints

Clears all the breakpoints in all the source code files in the target programs being debugged.

Switch to Monitor

Gives control to the Macintosh ROM Monitor program and any low-level debugger you may have
installed on your computer.

The Data Menu

Show Types

Shows the data types of the local and global variables in the Variable Pane of the Program Browser
Window.

Expand

Displays the C member, C++ data member, or Pascal field variables inside the selected structured
variable or dereferences the selected pointer in the Variable Pane of the Program Browser Window.

Collapse All

Hides all variables so that only the /ocals and Globals entries in the Variable Pane appear.

Copy to Collection

Copies the variable selected in the Variable Pane to the Collection Window. You can also drag and
drop variables from the Variable Pane to the Collection Window

Developers Note:

This command is not yet implemented.

41

Introduction

Open Window

Creates a separate window to display the selected variable. Open Window is useful to monitor the
values of large structured variables (Pascal records or C/C++ structs).

Developers Note:

This command is not yet implemented.

Pointer

Views a variable as a pointer. This command is checkmarked when a pointer variable is selected in
the Variable Pane of the Program Browser Window.

Array

Views an array in a separate window.

Developers Note:

This command is not yet implemented.

View as...

Views the selected variable as a different type. This command interprets the selected variable in the
Variable Pane as a different data type.

Memory variables can be viewed as any data type. The debugger ignores excess memory if the new
data type is smaller than the variable’s original type. The debugger reads more memory if the new
type is larger than the original type. A register variable can only be viewed as a type that has the
same size as the register.

To use View as. . ., first select a variable in the Variable Pane. Choose the View as...command in the
Data menu. A dialog box appears showing a list of all the data type names defined in the project
(Figure 14.10). Choosing a data type enters it in the edit field. If you want the selected variable to be
interpreted as a pointer, append an asterisk (*) to the data type name. Click OK to see the variable
as a variable of the type chosen.

42

Introduction

Figure 14.10 Using View as...

liew variable as type...

EitMap
Brush
BrushPrefs
char
Color¥alugs
double
Celecting a EventRecord
data type name flaat
here entersitin GrafPort
the edit field. long
long doubla
Menulnfo
Pattern
New type: !EuentHecnrd I Tomake it a
o - finter, addl an
(append one or more '*'s for pointer medarink TJ after
to type) the datatype
name for eazh
lewel of pointer
Cancel 0K dereTererr?cing.

Signed Decimal

Views the selected variable in the Variable Pane as a signed decimal value.

Unsigned Decimal

Views the selected variable in the Variable Pane as an unsigned decimal value.

Hexadecimal

Views the selected variable in the Variable Pane as a hexadecimal value.

Character

Views the selected variable in the Variable Pane as a character value.

The debugger uses ANSI C escape sequences to show non-printable characters. An escape
sequence uses a reverse-slash (\) followed by an octal number or a predefined escape sequence.
For example, character code 29 would be displayed as *\35’ (35 is the octal representation of
decimal 29). The tab character would be displayed as *\t".

43

Introduction

C String

Views the selected variable in the Variable Pane as a C character string. A C character string is a
sequence of ASCII characters terminated by a null character (*\0’). The string is displayed without

the null character.

Consult the debugger’s Character command for information on non-printable characters.

Pascal String
Views the selected variable in the Variable Pane as a Pascal character string. A Pascal character

string consists of an initial byte containing the number of characters in the string, followed by the
sequence of characters themselves. The initial length byte is not displayed.

Floating Point

Views the selected variable in the Variable Pane as a floating point value.

